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Abstract. We model the Internet as a network of interconnected Autonomous Systems which self-organize
under an absolute lack of centralized control. Our aim is to capture how the Internet evolves by reproducing
the assembly that has led to its actual structure and, to this end, we propose a growing weighted network
model driven by competition for resources and adaptation to maintain functionality in a demand and
supply balance. On the demand side, we consider the environment, a pool of users which need to transfer
information and ask for service. On the supply side, ASs compete to gain users, but to be able to provide
service efficiently, they must adapt their bandwidth as a function of their size. Hence, the Internet is not
modeled as an isolated system but the environment, in the form of a pool of users, is also a fundamental
part which must be taken into account. ASs compete for users and big and small come up, so that not
all ASs are identical. New connections between ASs are made or old ones are reinforced according to the
adaptation needs. Thus, the evolution of the Internet can not be fully understood if just described as a
technological isolated system. A socio-economic perspective must also be considered.

PACS. 89.20.Hh World Wide Web, Internet — 05.70.Ln Nonequilibrium and irreversible thermodynamics

— 87.23.Ge Dynamics of social systems — 89.75.Hc Networks and genealogical trees

1 Introduction

In an attempt to bring nearer theory and reality, many re-
searchers working on complex networks [1] have recently
shifted focus from unweighted graphs to weighted net-
works. Weight is just one of the relevant ingredients. Oth-
ers come from the fact that real systems are not static but
evolve. As broadly recognized, growth and preferential at-
tachment are also key issues at the core of a set of recent
network models focusing on evolution under an statistical
physics approach [2-7]. These models have been able to
approximate some topological features observed in many
real networks —specifically the small-world property or a
power-law degree distribution. Although a great step for-
ward in the understanding of the laws that shape network
evolution, these new degree driven models cannot describe
other empirical properties. Further on, in order to achieve
representations that closely match reality, it is necessary
to uncover new mechanisms. Following this motivation, we
believe that the general view of networks as isolated sys-
tems, although possibly appropriate in some cases, must
be changed if we want to describe in a proper way com-
plex systems which do not generate spontaneously but
self-organize within a medium in order to perform a func-
tion. Many networks evolve in an environment to which
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they interact and which usually provides the clues to un-
derstand functionality. When analyzing the dynamics of
network assembly, the interlock of its constituents with
the environment cannot be systematically obviated.

In this work, we blend all ideas above to present a
growing network model in which both, nodes and links, are
weighted [8]. The dynamical evolution is driven by expo-
nential growth, competition for resources, and adaptation
to maintain functionality in a demand and supply balance,
key mechanisms which may be relevant in a wide range of
self-organizing systems, in particular those where func-
tionality is tied to communication or traffic. The medium
in which the network grows and to with it interacts is here
represented by a pool of elements which, at the same time,
provide resources to the constituents of the network and
demand functionality, say for instance users in the case of
the Internet [9] or passengers in the case of the world-wide
airport network [10]. Competition is here understood as
a struggle between network nodes for new resources and
is modeled as a rich get richer (preferential attachment)
process. For their part, these captured elements demand
functionality so that nodes must adapt in order to perform
efficiently. This adaptation translates into the creation of
weighted links between nodes.

We apply those ideas to the Internet at the
Autonomous System (AS) level [9]. ASs are defined as in-
dependently administered domains which autonomously
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determine internal communications and routing policies
and, as a first approximation, they can be identified with
Internet Service Providers (ISP). This level of description
means a coarse grained representation of the Internet, in
contrast to a more detailed router description. The Inter-
net is a paradigmatic example of a self-organizing complex
system and significant efforts has been devoted to the de-
velopment of models which reproduce its topological prop-
erties. Candidates run from topology generators to degree
driven growing networks models or Highly Optimized Tol-
erance (HOT) models, see [9] and references therein. Some
of them reproduce heavy-tailed degree distributions and
small-world properties, but perform poorly when estimat-
ing correlations or other characteristic properties, such as
the k-core structure [11]. By contrast, we will show that
our model nicely reproduces an overwhelming number of
observed topological features: the small-world property,
the scale-free degree distribution P(k), high clustering co-
efficient ¢ that shows a hierarchical structure, disassor-
tative degree-degree correlations k., (k) [12], the scaling
of the higher order loop structure [13], the distributions
of the betweenness centrality, P(b), and triangles passing
through a node, P(T), and, finally, the k-core decomposi-
tion uncovering its hierarchical organization.

In the next sections we analyze the growth of the In-
ternet over the last years. Then we present the model.
Working in the continuum approximation, we find analyt-
ically the distribution of the sizes (in number of users) of
ASs and the degree distribution. Then, we introduce an
algorithm in order to simulate network assembly. At this
stage, we also make a first attempt to the consideration of
geographical constraints. Finally, the synthetic networks
are compared to the real maps of the Internet through a
variety of different measures.

2 The growth of the Internet

Let W (t) be the total number of users at a given time ¢,
measured as hosts. N (t) and E(t) stand for the number of
ASs and edges among them in the network, respectively.
Empirical measures for the growth in the number of
users have been obtained from the Hobbes Internet Time-
line (www.zakon.org/robert/internet/timeline/). The
growth of the network is analyzed from AS maps collected
by the Oregon route-views project, which has recorded
data since November 1997 (moat.nlanr.net/Routing/
rawdata/). According to those observations, see ref-
erence [8], we will assume exponential growths for
these quantities, W (t) ~ Wpe*, N(t) ~ Npe’t, and
E(t) ~ Epe®. These exponential growths, in turn,
determine the scaling relations with the system size:
W o« N8 E « N°P and (k) o« N%B=1 The rates
of growth can be measured to be a = 0.036 + 0.001,
8 = 0.0304 £ 0.0003, and 6 = 0.0330 £ 0.0002 (units are
month™1), where a > § > 3. These three rates are quite
close to each other but they are not equal. In fact, the
inequality o 2 (8 must hold in order to preserve network
functionality. When the number of users increases at a
rate «, there are two mechanisms capable to compensate
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the demand they represent: the creation of new nodes
and the creation of new connections by nodes already
present in the network. When both mechanisms take
place simultaneously, the rate of growth of new nodes, 3,
as well as the rate for the number of connections, §, must
necessarily be smaller than «. Any other situation would
lead to an imbalance between demand and supply of
service in the system. On the other hand, in a connected
network, § must be equal or greater than 3. If 0 equals 3
the average number of connections per node, or average
degree, remains constant in time, whereas it increases
when § 2 . This increase could correspond to a demand
per user which is not constant but grows in time, probably
due to the increase of the power of computers over time
and, as a consequence, to the ability to transfer bigger
files or to use more demanding applications.

3 The model

We define our model according to the following rules:
(1) at rate aW (¢), new users join the system and choose
node i according to some preference function, IT; ({w;(t)}),
where w;(t), 7 = 1,---,N(t), is the number of users
already connected to node j at time ¢. The function
II;({w;(t)}) is normalized so that ), IT;({w;(t)}) = 1 at
any time. (ii) at rate BN (t), new nodes join the network
with an initial number of users, wg, randomly withdrawn
from the pool of users already attached to existing nodes.
Therefore, wy can be understood as the minimum number
of users required to keep nodes in business. (iii) at rate
A, each user changes his AS and chooses a new one using
the same preference function IT;({w;(¢)}). Finally, (iv)
each node tries to adapt its number of connections to
other nodes according to its present number of users
or size, in an attempt to provide them an adequate
functionality. With all specifications above, we will work
in the continuum approximation to find some analytic
results, specifically the distribution of the sizes of ASs
and the degree distribution.

Analytic results. The resource dynamics of single nodes
is described by the stochastic differential equation

dwi
dt

= Afwit) + [D(wi, )] £(1), (1)
where w; is the number of users attached to AS i at time ¢.
The time dependent drift is A(w;,t) = (o + X) W(¢)II; —
Aw; — Bwyg, and the diffusion term is D(w;,t) = (a+ A)
W (t)II; + M\w; + Bwo — 2 w; II;. Application of the Central
Limit Theorem guarantees the convergence of the noise
&(t) to a Gaussian white noise in the limit W(t) > 1. The
first term in the expression for the drift is a creation term
accounting for new and old users that choose node i. The
second term represents those users who decide to change
their node and, finally, the last term corresponds to the
decrease of users due to introduction of newly created
nodes. To proceed further, we need to specify the prefer-
ence function IT; ({w;(t)}). We assume that nodes bigger in
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resources get users more easily than small ones. The sim-
plest function satisfying this condition corresponds to the
linear preference, that is, IT;({w;(t)}) = wi/W(t), where
W (t) = woNpexp (at). In this case, the stochastic differ-
ential equation (1) reads

dwi
dt

Notice that reallocation of users (i.e. the Ad-term) only in-
creases the diffusive part in equation (2) but has no net
effect in the drift term, which is, eventually, the leading
term. The complete solution of this problem requires to
solve the Fokker-Planck equation corresponding to equa-
tion (2) with a reflecting boundary condition at w = wy
and initial conditions p(w;, ti|wo,t;) = 0(w; — wo) (0(+)
stands for the Dirac delta function). Here p(w;,t|wo,t;)
is the probability that node ¢ has a number of users w;
at time t given that it had wg at time ¢;. The choice of a
reflecting boundary condition at w = wy is equivalent to
assume that 3 is the overall growth rate of the number
of nodes, that is, the composition of the birth and dead
processes ruling the evolution of the number of nodes.

To solve the problem we can take advantage of the
fact that, when o > [, the average number of users of
each node increases exponentially and, since D(w;,t) = O
(A(wy, t)), fluctuations vanishes in the long time limit. Un-
der this zero noise approximation, the number of users
connected to a node introduced at time ¢; is w; (t|t;) = gwo
+(1— g)woe“(t_ti). The probability density function of w
can be found to be, in the long time limit,

T(1—7)"w]

p(w,t) - (

= aw; — Pwo + [(Oé + 2)\)&% + ﬁw0]1/2 g(t) (2)

w— Tw0)1+79(wc(t) - w)a (3)
where we have defined 7 = 8/« and the cut-off is given
by we(t) ~ (1 — T)wpe™ ~ W(t). Thus, p(w,t) approaches
a stationary distribution with an increasing cut-off that
scales linearly with the total number of users. The char-
acteristic exponent of the distribution 1+ 7 takes a value
smaller but close to 2, since « = (.

The key point now is to relate the number of users
attached to an AS with its degree and bandwidth, see [8]
for a detailed discussion. Our first assumption is that each
node adapts its total bandwidth proportionally to its num-
ber of users following the lineal relation

bi(tlt:) =1+ a(t) (wi(tlt:) —wo), (4)

where b;(t|t;) is the total bandwidth of a node at time ¢
given that it was introduced at time ¢;. Summing equa-
tion (4) for all nodes we get a(t) = (2B(t)—N(t))/(W(t)—
woN(t)) =~ 2B(t)/W(t), where B(t) is the total band-
width of the network and we assume will grow according to
B(t) = Boe®t, §' > a and, thus, &' > 8. As a consequence,
the topological degree of a node cannot be proportional to
its bandwidth and we then propose the following scaling
relation

k(tlt;) = [b(t[t))""". (5)

All four growth rates in the model are not independent.
Summing equation (5) for all vertices, the scaling of the
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total number of connections is E(t) o< N(t)2~*/%" which

leads to 0’ = af/(26 — §). Combining this with equa-

tions (3-5), the degree distribution reads

7(1 = 7)" [woa(®)]” 1
jz kY

P(k) ~ O(ke(t) —k)  (6)
for & > 1, where the exponent  takes the value
v=1+1/(2-46/p8). Strikingly, the exponent ~ has lost
any direct dependence on « becoming a function of the
ratio §/3. Using the empirical values for 8 and 4, the
predicted exponent is v = 2.2 + 0.1, in excellent agree-
ment with the values reported in the literature [12,14]. Of
course, this does not mean that the exponent v is inde-
pendent of «, since both, § and ¢, may depend on the
growth of the number of users. Anyway, our model turns
out to depend on just two independent parameters which
can be expressed as ratios of the rates of growth, §/a and
5/p.

Simulations. Our algorithm, following the lines of
the model, works in four steps: (i) at iteration t,
AW (t) = woNy (e — e*(*=1)) users join the network and
choose provider among the existing nodes using the lin-
ear preference rule. (ii) AN(t) = No(eP* — e#=1) new
ASs are introduced with wq users each, those being ran-
domly withdrawn from already existing ASs. Newly cre-
ated ASs are located in a two dimensional plane follow-
ing a fractal set of dimension Dy = 1.5 [7]. (iii) Each
AS evaluate its increase of bandwidth, Ab;(t|¢;), accord-
ing to equation (4). (iv) a pair of nodes, (i,7), is chosen
with probability proportional to Ab;(t|t;) and Ab;(t|t;).
The reason is that those nodes that need a high band-
width increase will be more active when looking for part-
ners to whom form connections. Whenever they both
need to increase their bandwidth, they form a connection
with probability D(dij,w;,w;) = e~ dij/de(wirwi)  wwhere
de(wi,wj) = wjw;/kW(t), and k is a characteristic cost
of number of users per unit distance. We assume that
the physical distance among the ASs follows the same
spatial distribution as the one measured for routers [7].
This distance function takes into consideration that, due
to connection costs, physical links over long distances are
unlikely to be created by small peers. Once the first con-
nection has been formed, they create a new connection
with probability r (trade-off connection costs versus di-
versification), whenever they still need to increase their
bandwidth. This step is repeated until all nodes have the
desired bandwidth.

All simulations are performed using wy = 5000,
No=2, By =1, « = 0.035, 8 = 0.03, and §' = 0.04.
The final size of the networks is N =~ 11000, which ap-
proximately corresponds to the size of the actual maps for
2001 that we are considering in this work.

4 Testing the model

To test the model we construct synthetic networks from
our algorithm with and without taking into considera-
tion the geographical distribution of ASs, and we con-
trast several measures on those graphs to those of real
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Fig. 1. Distribution of the shortest path lengths (left) and cumulative degree distribution (Pe(k) = 3,5, P(k)) (right) for
the extended AS map compared to simulations of the model, 7 = 0.8. Inset (right): Simulation results of the AS’s degree as a
function of AS’s bandwidth. The solid line stands for the scaling relation equation (5) with u = /6" = 0.75.
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Fig. 2. Clustering coefficient, ¢, (left), and normalized average

map and for the model with and without distance constraints.

maps, more specifically, the AS map dated May 2001
from data collected by the Oregon Route Views Project
(moat.nlanr.net/Routing/rawdata/), and the AS ex-
tended (AS+) map [15] which completes the previous one
with data from other sources. Let us note that all the
measures presented here are performed over the same syn-
thetic networks. The parameters of the model are fixed
once and for all before generating the networks so that
they are not tuned in order to approach different proper-
ties.

First, we analyze the features of traditional interest
when aiming to reproduce the Internet topology. The
small world effect becomes clear when analyzing the dis-
tribution of the shortest path lengths, as seen in the left
side graph of Figure 1, with an average value very close
to the real one. The graph on the right of Figure 1 shows
simulation results for the cumulative degree distribution,
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in nice agreement to that measured for the AS+ map.
The inset exhibits simulation results of the AS’s degree
as a function of the AS’s bandwidth, confirming the scal-
ing ansatz equation (5). Clustering coeflicient and average
nearest neighbors degree are showed in Figure 2. Dashed
lines result from the model without distance constraints,
whereas squares correspond to the model with distance
constraints. Interestingly, the high level of clustering com-
ing out from the model arises as a consequence of the
pattern followed to attach nodes, so that only those AS
willing for new connections will link. Then, distance con-
straints introduce a disassortative component by inhibit-
ing connections between small ASs so that the hierarchical
structure of the real network is better reproduced. Now,
we turn our attention to new measures, which run from
the scaling of higher orders loops to the k-core structure.
Not only two-point correlations are well approximated by
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Fig. 3. Scaling of the number of loops of size 3, 4 and 5 (from bottom to top) for the model with and without distance
constraints, on the left and on the right respectively. Short lines correspond to real measures.
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Fig. 4. Cumulative distributions of the betweenness centrality (left) and of the number of triangles passing by a node (right).

our model, but it is also able to reproduce the scaling be- Table 1. Values for the exponents £(h) for h = 3, 4, and
havior of the number of loops of size 3, 4 and 5. This has 5 for the Internet and the models with and without distance
been recently measured for the Internet at the AS level constraints (after Bianconi et al. [13]).
in [13], and it is seen to follow a power of the system

. . S5 4
size of the form Nj,(N) ~ N with exponents that are System £G) €M) £6)
closely reproduced by our synthetic networks, see Figure 3 Internet AS map  1.45+0.07  2.07+0.01  2.45+0.08

and Table 1. In Figure 4, we observe on the left the cumu- Model 1.60+0.01 22040.03 2.70+0.03
lative distribution of betweenness centrality as proposed with distance
by Freeman [16], a measure of the varying importance of Model 1.59 £0.03 2.114+0.03 2.64+0.03

the vertices in a network. On the right, the cumulative  without distance
distribution of triangles passing by a node.

Finally, we also show the k-core decomposition of the
actual and the synthetic maps [11]. The k-core decompo-
sition is a recursive reduction of the network as a function in Figure 5. In the case of the model with distance con-
of the degree, which allows the recognition of hierarchical straints, even the coreness, the maximum number of layers
structure and more central nodes. A very good agreement in the k-core decomposition, is almost the same as in the
between real measures and our models can be appreciated Internet map.
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Fig. 5. k-cores for the AS+ Internet map (left) and for the maps generated from our model with and without distance (center

and right). Visualizations produced by the tool LANET-VTI [11].

5 Conclusions

We have presented a simple weighted growing network
model for the Internet, based on evolution, environmental
interaction and heterogeneity. The dynamics is driven by
two key mechanisms, competition and adaptation, which
may be relevant in other self-organizing systems. Beyond
technical details, many empirical features are nicely re-
produced but open questions remain, perhaps the more
important one being whether the general ideas and mech-
anisms exposed in this work could help us to better un-
derstand other complex systems.
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2001-33555. M.B. acknowledges financial support from the
MCyT (Spain).
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